General massless field equations for higher spin in dimension 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439107" target="_blank" >RIV/00216208:11320/21:10439107 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ob5phfHUJG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ob5phfHUJG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.7598" target="_blank" >10.1002/mma.7598</a>
Alternative languages
Result language
angličtina
Original language name
General massless field equations for higher spin in dimension 4
Original language description
Massless field equations are fundamental in particle physics. In Clifford analysis, the Euclidean version of these equations has been dealt with, but it is not clear, even in dimension 4, what should be the right analogue of massless field equations for fields with values in a general irreducible Spin(4)-module. The main aim of the paper is to explain that a good possibility is to take the so-called generalized Cauchy-Riemann equations proposed a long time ago by Stein and Weiss. For this choice of the equations, we show that their polynomial solutions form different irreducible Spin(4)-modules. This is an important step in developing the corresponding function theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11473S" target="_blank" >GA20-11473S: Symmetry and invariance in analysis, geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
Neuveden
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
1-13
UT code for WoS article
000663853800001
EID of the result in the Scopus database
2-s2.0-85108365546