Wiener-Luxemburg amalgam spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447824" target="_blank" >RIV/00216208:11320/22:10447824 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AmjcENGtl1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AmjcENGtl1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2021.109270" target="_blank" >10.1016/j.jfa.2021.109270</a>
Alternative languages
Result language
angličtina
Original language name
Wiener-Luxemburg amalgam spaces
Original language description
In this paper we introduce the concept of Wiener-Luxemburg amalgam spaces which are a modification of the more classical Wiener amalgam spaces intended to address some of the shortcomings the latter face in the context of rearrangement-invariant Banach function spaces. We introduce the Wiener-Luxemburg amalgam spaces and study their properties, including (but not limited to) their normability, embeddings between them and their associate spaces. We also study amalgams of quasi-Banach function spaces and introduce a necessary generalisation of the concept of associate spaces. We then apply this general theory to resolve the question whether the Hardy-Littlewood-Polya principle holds for all r.i. quasi-Banach function spaces. Finally, we illustrate the asserted shortcomings of Wiener amalgam spaces by providing counterexamples to certain properties of Banach function spaces as well as rearrangement (C) 2021 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
1096-0783
Volume of the periodical
282
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
47
Pages from-to
109270
UT code for WoS article
000709435800013
EID of the result in the Scopus database
2-s2.0-85116517926