All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overcomplete sets in non-separable Banach spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00539374" target="_blank" >RIV/67985840:_____/21:00539374 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/21:00355088

  • Result on the web

    <a href="https://doi.org/10.1090/proc/15213" target="_blank" >https://doi.org/10.1090/proc/15213</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/15213" target="_blank" >10.1090/proc/15213</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overcomplete sets in non-separable Banach spaces

  • Original language description

    We introduce and study the notion of overcomplete sets in a Banach space that subsumes and extends the classical concept of overcomplete sequence in a (separable) Banach space. We give existence and non-existence results of overcomplete sets for a wide class of (non-separable) Banach spaces and we study to which extent properties of overcomplete sequences are retained by every overcomplete set.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

    1088-6826

  • Volume of the periodical

    149

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    701-714

  • UT code for WoS article

    000609255600021

  • EID of the result in the Scopus database

    2-s2.0-85100066025