SUPERVISED NONPARAMETRIC CLASSIFICATION IN THE CONTEXT OF REPLICATED POINT PATTERNS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447848" target="_blank" >RIV/00216208:11320/22:10447848 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AQ0SX49DqO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AQ0SX49DqO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5566/ias.2652" target="_blank" >10.5566/ias.2652</a>
Alternative languages
Result language
angličtina
Original language name
SUPERVISED NONPARAMETRIC CLASSIFICATION IN THE CONTEXT OF REPLICATED POINT PATTERNS
Original language description
A spatial point pattern is a collection of points in space, representing, e.g. observed locations of trees, bird nests, centers of cells in a histological sample, etc. When several independent realizations of the underlying stochastic process are observed, these realizations are referred to as replicated point patterns. The main objective of this paper is to classify a newly observed pattern into one of the existing classes using a supervised nonparametric classification method, namely the Bayes classifier in combination with the k-nearest neighbors algorithms and the kernel regression method. The dissimilarity between a pair of patterns is defined using the functional summaries extracted from the point patterns via the Cramer-von Mises or Kolmogorov-Smirnov type formula. A set of simulation experiments is presented to investigate the performance of the proposed classifier with a dissimilarity measure based on functional summaries, such as the pair correlation function. The application of such a classifier to a real point pattern dataset is also illustrated.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA19-04412S" target="_blank" >GA19-04412S: New approaches to modeling and statistics of random sets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Image Analysis and Stereology
ISSN
1580-3139
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
2
Country of publishing house
SI - SLOVENIA
Number of pages
18
Pages from-to
57-74
UT code for WoS article
000824607400001
EID of the result in the Scopus database
—