All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Supervised classification via neural networks for replicated point patterns

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468865" target="_blank" >RIV/00216208:11320/23:10468865 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-09034-9_32" target="_blank" >https://doi.org/10.1007/978-3-031-09034-9_32</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-09034-9_32" target="_blank" >10.1007/978-3-031-09034-9_32</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Supervised classification via neural networks for replicated point patterns

  • Original language description

    A spatial point pattern is a collection of points observed in a bounded region of R^d, d &lt;= 2. Individual points represent, e.g., observed locations of cell nuclei in~a~tissue (d = 2) or centers of undesirable air bubbles in industrial materials (d = 3). The main goal of this paper is to show the possibility of solving the supervised classification task for point patterns via neural networks with general input space. To predict the class membership for a newly observed pattern, we compute an empirical estimate of a selected functional characteristic (e. g., the pair correlation function). Then, we consider this estimated function to be a functional variable that enters the input layer of the network. A short simulation example illustrates the performance of the proposed classifier in the situation where the observed patterns are generated from two models with different spatial interactions. In addition, the proposed classifier is compared with convolutional neural networks (with point patterns represented by binary images) and kernel regression. We consider the kernel regression classifiers for point patterns a benchmark in this setting.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/EF19_073%2F0016935" target="_blank" >EF19_073/0016935: Grant schemes at Charles University</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Classification and Data Science in the Digital Age, Proceedings of the 17th conference of the International Federation of Classification Societies

  • ISBN

    978-3-031-09033-2

  • ISSN

    1431-8814

  • e-ISSN

    2198-3321

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    Springer Cham

  • Place of publication

    neuveden

  • Event location

    Porto

  • Event date

    Jul 19, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article