A universal approach for multi-model schema inference
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10448404" target="_blank" >RIV/00216208:11320/22:10448404 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z102_n3FDd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z102_n3FDd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s40537-022-00645-9" target="_blank" >10.1186/s40537-022-00645-9</a>
Alternative languages
Result language
angličtina
Original language name
A universal approach for multi-model schema inference
Original language description
The variety feature of Big Data, represented by multi-model data, has brought a new dimension of complexity to all aspects of data management. The need to process a set of distinct but interlinked data models is a challenging task. In this paper, we focus on the problem of inference of a schema, i.e., the description of the structure of data. While several verified approaches exist in the single-model world, their application for multi-model data is not straightforward. We introduce an approach that ensures inference of a common schema of multi-model data capturing their specifics. It can infer local integrity constraints as well as intra- and inter-model references. Following the standard features of Big Data, it can cope with overlapping models, i.e., data redundancy, and it is designed to process efficiently significant amounts of data.To the best of our knowledge, ours is the first approach addressing schema inference in the world of multi-model databases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-22276S" target="_blank" >GA20-22276S: Unified Management of Multi-Model Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Big Data
ISSN
2196-1115
e-ISSN
2196-1115
Volume of the periodical
9
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
46
Pages from-to
1-46
UT code for WoS article
000839641800001
EID of the result in the Scopus database
2-s2.0-85135861976