Confidence intervals for point-of-stabilization of content uniformity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10448839" target="_blank" >RIV/00216208:11320/22:10448839 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZR~6vsgBd7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZR~6vsgBd7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/pst.2207" target="_blank" >10.1002/pst.2207</a>
Alternative languages
Result language
angličtina
Original language name
Confidence intervals for point-of-stabilization of content uniformity
Original language description
Within the framework of continuous pharmaceutical manufacturing, we are interested in statistical modeling of the initial behavior of the production line. Assuming a gradually changing sequence of a suitable product quality characteristic (e.g., the content uniformity), we estimate the so-called point-of-stabilization (PoSt) and construct corresponding confidence regions based on appropriate asymptotic distributions and bootstrap. We investigate linear, quadratic, and nonlinear gradual change models both in homoscedastic and heteroscedastic setup. We propose a new nonlinear E-max gradual change model and show that it is applicable even if the true model is linear. Asymptotic distribution of the PoSt estimator is known only in a homoscedastic linear and quadratic model and, therefore, bootstrap approximations are used to construct one-sided PoSt confidence intervals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GF22-01639K" target="_blank" >GF22-01639K: Gradual Functional Changes - GraFuCha</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pharmaceutical Statistics
ISSN
1539-1604
e-ISSN
1539-1612
Volume of the periodical
21
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
944-959
UT code for WoS article
000773669400001
EID of the result in the Scopus database
2-s2.0-85127341594