Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10449145" target="_blank" >RIV/00216208:11320/22:10449145 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ueKX4.npEl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ueKX4.npEl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-021-01240-5" target="_blank" >10.1007/s00211-021-01240-5</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
Original language description
In this paper we derive and analyse a class of linearly implicit schemes which includes the one of Feistauer and Kucera (J Comput Phys 224:208-221, 2007) as well as the class of RS-IMEX schemes (Schutz and Noelle in J Sci Comp 64:522-540, 2015; Kaiser et al. in J Sci Comput 70:1390-1407, 2017; Bispen et al. in Commun Comput Phys 16:307-347, 2014; Zakerzadeh in ESAIM Math Model Numer Anal 53:893-924, 2019). The implicit part is based on a Jacobian matrix which is evaluated at a reference state. This state can be either the solution at the old time level as in Feistauer and Kucera (2007), or a numerical approximation of the incompressible limit equations as in Zeifang et al. (Commun Comput Phys 27:292-320, 2020), or possibly another state. Subsequently, it is shown that this class of methods is asymptotically preserving under the assumption of a discrete Hilbert expansion. For a one-dimensional setting with some limitations on the reference state, the existence of a discrete Hilbert expansion is shown.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerische Mathematik
ISSN
0029-599X
e-ISSN
0945-3245
Volume of the periodical
150
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
79-103
UT code for WoS article
000721479100001
EID of the result in the Scopus database
2-s2.0-85119687407