Low-Mach consistency of a class of linearly implicit schemes for the compressible Euler equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437879" target="_blank" >RIV/00216208:11320/21:10437879 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.21136/panm.2020.07" target="_blank" >https://doi.org/10.21136/panm.2020.07</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/panm.2020.07" target="_blank" >10.21136/panm.2020.07</a>
Alternative languages
Result language
angličtina
Original language name
Low-Mach consistency of a class of linearly implicit schemes for the compressible Euler equations
Original language description
In this note, we give an overview of the authors' paper [6] which deals with asymptotic consistency of a class of linearly implicit schemes for the compressible Euler equations. This class is based on a linearization of the nonlinear fluxes at a reference state and includes the scheme of Feistauer and Kucera [3] as well as the class of RS-IMEX schemes [8, 5, 1] as special cases. We prove that the linearization gives an asymptotically consistent solution in the low-Mach limit under the assumption of a discrete Hilbert expansion. The existence of the Hilbert expansion is shown under simplifying assumptions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptive methods for the numerical solution of partial differential equations: analysis, error estimates and iterative solvers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 20
ISBN
978-80-85823-71-4
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
69-78
Publisher name
ACAD SCIENCES CZECH REPUBLIC, INST MATHEMATICS
Place of publication
PRAHA 1
Event location
Hejnice
Event date
Jun 21, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000672803500007