All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ridge reconstruction of partially observed functional data is asymptotically optimal

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114134" target="_blank" >RIV/00216224:14310/20:00114134 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.spl.2020.108813" target="_blank" >https://doi.org/10.1016/j.spl.2020.108813</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.spl.2020.108813" target="_blank" >10.1016/j.spl.2020.108813</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ridge reconstruction of partially observed functional data is asymptotically optimal

  • Original language description

    When functional data are observed on parts of the domain, it is of interest to recover the missing parts of curves. Kraus (2015) proposed a linear reconstruction method based on ridge regularization. Kneip and Liebl (2019) argue that an assumption under which Kraus (2015) established the consistency of the ridge method is too restrictive and propose a principal component reconstruction method that they prove to be asymptotically optimal. In this note we relax the restrictive assumption that the true best linear reconstruction operator is Hilbert–Schmidt and prove that the ridge method achieves asymptotic optimality under essentially no assumptions. The result is illustrated in a simulation study.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GJ17-22950Y" target="_blank" >GJ17-22950Y: Statistical inference for complex stochastic processes in econometric modelling</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Statistics and Probability Letters

  • ISSN

    0167-7152

  • e-ISSN

    1879-2103

  • Volume of the periodical

    165

  • Issue of the periodical within the volume

    OCT 2020

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    5

  • Pages from-to

    1-5

  • UT code for WoS article

    000552009600001

  • EID of the result in the Scopus database

    2-s2.0-85085042917