A note on the convergence of lift zonoids of measures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452031" target="_blank" >RIV/00216208:11320/22:10452031 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xhvr8n.PXH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xhvr8n.PXH</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/sta4.453" target="_blank" >10.1002/sta4.453</a>
Alternative languages
Result language
angličtina
Original language name
A note on the convergence of lift zonoids of measures
Original language description
The lift zonoid is a convenient representation of an integrable measure by a convex set in a higher-dimensional space. It is known that, under appropriate conditions, a uniformly integrable sequence of measures converges weakly if and only if the corresponding sequence of lift zonoids converges in the Hausdorff metric. We provide a new proof of this essential result. Our proof technique allows us to eliminate the unnecessary conditions previously considered in the literature. As a by-product, we obtain a characterization of uniform integrability, and a simple sufficient condition for tightness, of a sequence of integrable measures in terms lift zonoids.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometric aspects of mathematical statistics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Stat [online]
ISSN
2049-1573
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
e453
UT code for WoS article
000790500400001
EID of the result in the Scopus database
2-s2.0-85145180431