The homotopy theory of complete modules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452297" target="_blank" >RIV/00216208:11320/22:10452297 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4dI_4nmyAx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4dI_4nmyAx</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2021.11.030" target="_blank" >10.1016/j.jalgebra.2021.11.030</a>
Alternative languages
Result language
angličtina
Original language name
The homotopy theory of complete modules
Original language description
Given a commutative ring R and finitely generated ideal I, one can consider the classes of I-adically complete, L-0(I)-complete and derived I -complete complexes. Under a mild assumption on the ideal I called weak pro-regularity, these three notions of completions interact well. We consider the classes of I-adically complete, L-0(I)-complete and derived I -complete complexes and prove that they present the same homotopy theory. Given a ring homomorphism R ->& nbsp; S, we then give necessary and sufficient conditions for the categories of complete R complexes and the categories of complete S -complexes to have equivalent homotopy theories. This recovers and generalizes a result of Sather-Wagstaff and Wicklein on extended local (co)homology. (C)& nbsp;2021 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-02760Y" target="_blank" >GJ20-02760Y: Cohen-Macaulay rings and their applications in higher algebra and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
1090-266X
Volume of the periodical
594
Issue of the periodical within the volume
594
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
74-100
UT code for WoS article
000789489300003
EID of the result in the Scopus database
2-s2.0-85121098242