WHEN SYMMETRIES ARE NOT ENOUGH: A HIERARCHY OF HARD CONSTRAINT SATISFACTION PROBLEMS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452373" target="_blank" >RIV/00216208:11320/22:10452373 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ah9yRIa7N3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ah9yRIa7N3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1383471" target="_blank" >10.1137/20M1383471</a>
Alternative languages
Result language
angličtina
Original language name
WHEN SYMMETRIES ARE NOT ENOUGH: A HIERARCHY OF HARD CONSTRAINT SATISFACTION PROBLEMS
Original language description
We produce a class of w-categorical structures with finite signature by applying a model-theoretic construction---a refinement of the Hrushovski-enco ding---to w-categorical structures in a possibly infinite signature. We show that the encoded structures retain desirable algebraic properties of the original structures, but that the constraint satisfaction problems (CSPs) associated with these structures can be badly behaved in terms of computational complexity. This method allows us to systematically generate w-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity and w-categorical templates that show that membership in any given complexity class containing AC0 cannot be expressed by a set of identities on the polymorphisms. It moreover enables us to prove that recent results about the relevance of topology on polymorphism clones of w-categorical structures also apply for CSP templates, i.e., structures in a finite language. Finally, we obtain a concrete algebraic criterion which could constitute a description of the delineation between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely bounded homogeneous structures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-20123S" target="_blank" >GA18-20123S: Expanding the Scope of Universal Algebra</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Computing
ISSN
0097-5397
e-ISSN
1095-7111
Volume of the periodical
2022
Issue of the periodical within the volume
51
Country of publishing house
US - UNITED STATES
Number of pages
39
Pages from-to
175-213
UT code for WoS article
000776377400001
EID of the result in the Scopus database
2-s2.0-85128646965