All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

WHEN SYMMETRIES ARE NOT ENOUGH: A HIERARCHY OF HARD CONSTRAINT SATISFACTION PROBLEMS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452373" target="_blank" >RIV/00216208:11320/22:10452373 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ah9yRIa7N3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ah9yRIa7N3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/20M1383471" target="_blank" >10.1137/20M1383471</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    WHEN SYMMETRIES ARE NOT ENOUGH: A HIERARCHY OF HARD CONSTRAINT SATISFACTION PROBLEMS

  • Original language description

    We produce a class of w-categorical structures with finite signature by applying a model-theoretic construction---a refinement of the Hrushovski-enco ding---to w-categorical structures in a possibly infinite signature. We show that the encoded structures retain desirable algebraic properties of the original structures, but that the constraint satisfaction problems (CSPs) associated with these structures can be badly behaved in terms of computational complexity. This method allows us to systematically generate w-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity and w-categorical templates that show that membership in any given complexity class containing AC0 cannot be expressed by a set of identities on the polymorphisms. It moreover enables us to prove that recent results about the relevance of topology on polymorphism clones of w-categorical structures also apply for CSP templates, i.e., structures in a finite language. Finally, we obtain a concrete algebraic criterion which could constitute a description of the delineation between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely bounded homogeneous structures.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-20123S" target="_blank" >GA18-20123S: Expanding the Scope of Universal Algebra</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Computing

  • ISSN

    0097-5397

  • e-ISSN

    1095-7111

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    51

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

    175-213

  • UT code for WoS article

    000776377400001

  • EID of the result in the Scopus database

    2-s2.0-85128646965