All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Scalar-on-function local linear regression and beyond

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452435" target="_blank" >RIV/00216208:11320/22:10452435 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=M1ECjJTfNt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=M1ECjJTfNt</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/biomet/asab027" target="_blank" >10.1093/biomet/asab027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Scalar-on-function local linear regression and beyond

  • Original language description

    It is common to want to regress a scalar response on a random function. This paper presents results that advocate local linear regression based on a projection as a nonparametric approach to this problem. Our asymptotic results demonstrate that functional local linear regression outperforms its functional local constant counterpart. Beyond the estimation of the regression operator itself, local linear regression is also a useful tool for predicting the functional derivative of the regression operator, a promising mathematical object in its own right. The local linear estimator of the functional derivative is shown to be consistent. For both the estimator of the regression functional and the estimator of its derivative, theoretical properties are detailed. On simulated datasets we illustrate good finite-sample properties of the proposed methods. On a real data example of a single-functional index model, we indicate how the functional derivative of the regression operator provides an original, fast and widely applicable estimation method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometric aspects of mathematical statistics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biometrika

  • ISSN

    0006-3444

  • e-ISSN

    1464-3510

  • Volume of the periodical

    109

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    439-455

  • UT code for WoS article

    000769813800001

  • EID of the result in the Scopus database

    2-s2.0-85132115681