All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Kernel estimation of regression function gradient

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00115009" target="_blank" >RIV/00216224:14310/20:00115009 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.tandfonline.com/doi/full/10.1080/03610926.2018.1532518" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/03610926.2018.1532518</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03610926.2018.1532518" target="_blank" >10.1080/03610926.2018.1532518</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Kernel estimation of regression function gradient

  • Original language description

    The present paper is focused on kernel estimation of the gradient of a multivariate regression function. Despite the importance of estimating partial derivatives of multivariate regression functions, the progress is rather slow. Our aim is to construct the gradient estimator using the idea of a local linear estimator for the regression function. The quality of this estimator is expressed in terms of the Mean Integrated Square Error. We focus on a crucial problem in kernel gradient estimation the choice of bandwidth matrix. Further, we present some data-driven methods for its choice and develop a new approach based on Newton's iterative process. The performance of presented methods is illustrated using a simulation study and real data example.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Statistics - Theory and Methods

  • ISSN

    0361-0926

  • e-ISSN

    1532-415X

  • Volume of the periodical

    49

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    135-151

  • UT code for WoS article

    000499984200011

  • EID of the result in the Scopus database

    2-s2.0-85059453090