Coherent propagation of vortex rings at extremely high Reynolds numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452857" target="_blank" >RIV/00216208:11320/22:10452857 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2H4vervg5p" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2H4vervg5p</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jfm.2022.972" target="_blank" >10.1017/jfm.2022.972</a>
Alternative languages
Result language
angličtina
Original language name
Coherent propagation of vortex rings at extremely high Reynolds numbers
Original language description
We take advantage of the extremely small kinematic viscosity of superfluid 4He to investigate the propagation of macroscopic vortex rings at Reynolds numbers between 2 x 10(4) and 4 x 10(6). These inhomogeneous flow structures are thermally generated by releasing short power pulses into a small volume of liquid, open to the surrounding bath through a vertical tube 2 mm in diameter. We study specifically the ring behaviour between 1.30 and 1.80 K using the flow visualization and second sound attenuation techniques. From the obtained data sets, containing more than 2600 realizations, we find that the rings remain well-defined in space and time for distances up to at least 40 tube diameters, and that their circulation depends significantly on the travelled distance, in a way similar to that observed for turbulent vortex rings propagating in Newtonian fluids. Additionally, the ring velocity and circulation appear to be influenced solely by a single, experimentally accessible parameter, combining the liquid temperature with the magnitude and duration of the power pulse. Overall, our results support the view that macroscopic vortex rings moving in superfluid He-4 closely resemble their Newtonian analogues, at least in the absence of significant thermal effects and at sufficiently large flow scales.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA19-00939S" target="_blank" >GA19-00939S: Dynamics of large vortices in quantum turbulence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Fluid Mechanics
ISSN
0022-1120
e-ISSN
1469-7645
Volume of the periodical
953
Issue of the periodical within the volume
9 December 2022
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
A28
UT code for WoS article
000895808700001
EID of the result in the Scopus database
2-s2.0-85143893254