Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures & nbsp;
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452912" target="_blank" >RIV/00216208:11320/22:10452912 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kuNyYL8G9U" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kuNyYL8G9U</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0041053" target="_blank" >10.1063/5.0041053</a>
Alternative languages
Result language
angličtina
Original language name
Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures & nbsp;
Original language description
The existence of large-data weak solutions to a steady compressible Navier-Stokes-Fourier system for chemically reacting fluid mixtures is proved. General free energies are considered satisfying some structural assumptions, with a pressure containing a gamma-power law. The model is thermodynamically consistent and contains the Maxwell-Stefan cross-diffusion equations in the Fick-Onsager form as a special case. Compared to previous works, a very general model class is analyzed, including cross-diffusion effects, temperature gradients, compressible fluids, and different molar masses. A priori estimates are derived from the entropy balance and the total energy balance. The compactness for the total mass density follows from an estimate for the pressure in L-p with p > 1, the effective viscous flux identity, and uniform bounds related to Feireisl's oscillation defect measure. These bounds rely heavily on the convexity of the free energy and the strong convergence of the relative chemical potentials.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
63
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
48
Pages from-to
051501
UT code for WoS article
000793446500002
EID of the result in the Scopus database
2-s2.0-85129848306