Existence analysis of a single-phase flow mixture with van der Waals pressure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00319358" target="_blank" >RIV/68407700:21340/18:00319358 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/16M1107024" target="_blank" >http://dx.doi.org/10.1137/16M1107024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/16M1107024" target="_blank" >10.1137/16M1107024</a>
Alternative languages
Result language
angličtina
Original language name
Existence analysis of a single-phase flow mixture with van der Waals pressure
Original language description
The transport of single-phase fluid mixtures in porous media is described by cross- diffusion equations for the mass densities. The equations are obtained in a thermodynamic consistent way from mass balance, Darcy’s law, and the van der Waals equation of state for mixtures. The model consists of parabolic equations with cross diffusion with a hypocoercive diffusion operator. The global-in-time existence of weak solutions in a bounded domain with equilibrium boundary conditions is proved, extending the boundedness-by-entropy method. Based on the free energy inequality, the large-time convergence of the solution to the constant equilibrium mass density is shown. For the two-species model and specific diffusion matrices, an integral inequality is proved, which reveals a minimum principle for the mass fractions. Without mass diffusion, the two-dimensional pressure is shown to converge exponentially fast to a constant. Numerical examples in one space dimension illustrate this convergence.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Volume of the periodical
50
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
1367-1395
UT code for WoS article
000426630900043
EID of the result in the Scopus database
2-s2.0-85043526119