Big Ramsey Degrees of 3-Uniform Hypergraphs Are Finite
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453247" target="_blank" >RIV/00216208:11320/22:10453247 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uKRKwTteUd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uKRKwTteUd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00493-021-4664-9" target="_blank" >10.1007/s00493-021-4664-9</a>
Alternative languages
Result language
angličtina
Original language name
Big Ramsey Degrees of 3-Uniform Hypergraphs Are Finite
Original language description
We prove that the universal homogeneous 3-uniform hypergraph has finite big Ramsey degrees. This is the first case where big Ramsey degrees are known to be finite for structures in a non-binary language. Our proof is based on the vector (or product) form of Milliken's Tree Theorem and demonstrates a general method to carry existing results on structures in binary relational languages to higher arities.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorica
ISSN
0209-9683
e-ISSN
1439-6912
Volume of the periodical
2022
Issue of the periodical within the volume
42
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
659-672
UT code for WoS article
000757755200005
EID of the result in the Scopus database
2-s2.0-85124740484