All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Biprojective Almost Perfect Nonlinear Functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453380" target="_blank" >RIV/00216208:11320/22:10453380 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HTYEQ1mN3a" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=HTYEQ1mN3a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIT.2022.3157798" target="_blank" >10.1109/TIT.2022.3157798</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Biprojective Almost Perfect Nonlinear Functions

  • Original language description

    In this paper, we introduce the concept of biprojectivity in studying the cryptographically important almost perfect nonlinear (APN) functions. Although several known families of biprojective APN functions exist in the literature, the concept itself has not been explicitly observed and studied in detail. We give a survey of known APN families and functions that fall into the biprojective setting, then provide a method for finding such families and functions. We finally give two new infinite families of biprojective APN functions CCZ-inequivalent to any known APN function and study their properties.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-19087S" target="_blank" >GA18-19087S: Cryptography based on Finite Fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Information Theory

  • ISSN

    0018-9448

  • e-ISSN

    1557-9654

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    68

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    4750-4760

  • UT code for WoS article

    000812529200040

  • EID of the result in the Scopus database

    2-s2.0-85126292557