On CCZ-inequivalence of some families of almost perfect
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436281" target="_blank" >RIV/00216208:11320/21:10436281 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qQcKLXZywh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qQcKLXZywh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12095-021-00476-0" target="_blank" >10.1007/s12095-021-00476-0</a>
Alternative languages
Result language
angličtina
Original language name
On CCZ-inequivalence of some families of almost perfect
Original language description
Browning et al. (2010) exhibited almost perfect nonlinear (APN) permutations on F26. This was the first example of an APN permutation on an even degree extension of F2. In their approach of finding an APN permutation, Browning et al. made use of a necessary and sufficient condition based on the Walsh transform. In this paper, we give an algorithm based on a related necessary condition which checks whether a vectorial Boolean function is CCZ-inequivalent to a permutation. Using this algorithm, we are able to show that no function belonging to a known family of APN functions is equivalent to a permutation on F22m, where m <= 6 (except for the known case on F26). We also give an EA-invariant based on the condition. Finally, we give a theoretical proof of the fact that no member of a specific family of APN functions is equivalent to a permutation on doubly-even degree extensions of F2. Access provided by Charles University
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-19087S" target="_blank" >GA18-19087S: Cryptography based on Finite Fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Cryptography and Communications
ISSN
1936-2447
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
377-391
UT code for WoS article
000629437800001
EID of the result in the Scopus database
2-s2.0-85102902097