All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of (q, q)-biprojective APN functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453382" target="_blank" >RIV/00216208:11320/22:10453382 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/23:10472169

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vWLIkVRWrC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vWLIkVRWrC</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIT.2022.3220724" target="_blank" >10.1109/TIT.2022.3220724</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of (q, q)-biprojective APN functions

  • Original language description

    -In this paper, we classify (q, q)-biprojective almostperfect nonlinear (APN) functions over L x L under the naturalleft and right action of GL(2, L) where L is a finite field ofcharacteristic 2. This shows in particular that the only quadraticAPN functions (up to CCZ-equivalence) over L x L that satisfythe so-called subfield property are the Gold functions and thefunction κ : F64 RIGHTWARDS ARROW F64 which is the only known APN functionthat is equivalent to a permutation over L x L up to CCZequivalence as shown in (Browning, Dillon, McQuistan, andWolfe, 2010). Deciding whether there exist other quadratic APNfunctions CCZ-equivalent to permutations that satisfy subfieldproperty or equivalently, generalizing κ to higher dimensionswas an open problem listed for instance in (Carlet, 2015) as oneof the interesting open problems on cryptographic functions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-19087S" target="_blank" >GA18-19087S: Cryptography based on Finite Fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Information Theory

  • ISSN

    0018-9448

  • e-ISSN

    1557-9654

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    02

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1988-1999

  • UT code for WoS article

    000966885700001

  • EID of the result in the Scopus database

    2-s2.0-85141600112