Higher Kiss terms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453395" target="_blank" >RIV/00216208:11320/22:10453395 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X0w4OiZa5j" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X0w4OiZa5j</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218196722500539" target="_blank" >10.1142/S0218196722500539</a>
Alternative languages
Result language
angličtina
Original language name
Higher Kiss terms
Original language description
We show that the modular term condition higher commutator is equal to the modular hypercommutator. As a consequence, we arrive at a new proof that HC8 holds for modular varieties. Next, we develop a procedure for a modular variety for producing the higher dimensional congruences that characterize the hypercommutator. This procedure allows us to demonstrate that every modular variety has an infinite sequence of what we call higher dimensional Kiss terms. We use these results to extend the scope of a theorem of Oprsal from permutable varieties to modular varieties.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Algebra and Computation
ISSN
0218-1967
e-ISSN
1793-6500
Volume of the periodical
2022
Issue of the periodical within the volume
32
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
1233-1259
UT code for WoS article
000844590400008
EID of the result in the Scopus database
2-s2.0-85133821893