Relation between interfacial shear and friction force in 2D materials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453417" target="_blank" >RIV/00216208:11320/22:10453417 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=poDufwjFvr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=poDufwjFvr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41565-022-01237-7" target="_blank" >10.1038/s41565-022-01237-7</a>
Alternative languages
Result language
angličtina
Original language name
Relation between interfacial shear and friction force in 2D materials
Original language description
Understanding the interfacial properties between an atomic layer and its substrate is of key interest at both the fundamental and technological levels. From Fermi level pinning to strain engineering and superlubricity, the interaction between a single atomic layer and its substrate governs electronic, mechanical and chemical properties. Here, we measure the hardly accessible interfacial transverse shear modulus of an atomic layer on a substrate. By performing measurements on bulk graphite, and on epitaxial graphene films on SiC with different stacking orders and twisting, as well as in the presence of intercalated hydrogen, we find that the interfacial transverse shear modulus is critically controlled by the stacking order and the atomic layer-substrate interaction. Importantly, we demonstrate that this modulus is a pivotal measurable property to control and predict sliding friction in supported two-dimensional materials. The experiments demonstrate a reciprocal relationship between friction force per unit contact area and interfacial shear modulus. The same relationship emerges from simulations with simple friction models, where the atomic layer-substrate interaction controls the shear stiffness and therefore the resulting friction dissipation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Nanotechnology [online]
ISSN
1748-3395
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
October
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
1280-1287
UT code for WoS article
000876851700002
EID of the result in the Scopus database
2-s2.0-85140953074