All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Irreducibility of the Tutte polynomial of an embedded graph

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454042" target="_blank" >RIV/00216208:11320/22:10454042 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3duqtgnAJY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3duqtgnAJY</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5802/alco.252" target="_blank" >10.5802/alco.252</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Irreducibility of the Tutte polynomial of an embedded graph

  • Original language description

    We prove that the ribbon graph polynomial of a graph embedded in an orientable surface is irreducible if and only if the embedded graph is neither the disjoint union nor the join of embedded graphs. This result is analogous to the fact that the Tutte polynomial of a graph is irreducible if and only if the graph is connected and non-separable.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-21082S" target="_blank" >GA19-21082S: Graphs and their algebraic properties</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebraic Combinatorics [online]

  • ISSN

    2589-5486

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    15

  • Pages from-to

    1337-1351

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85145923102