Approximating the Crossing Number of Apex Graphs (poster)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F09%3A00029117" target="_blank" >RIV/00216224:14330/09:00029117 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximating the Crossing Number of Apex Graphs (poster)
Original language description
We show that the crossing number of an apex graph, i.e. a graph $G$ from which only one vertex $v$ has to be removed to make it planar, can be approximated up to a factor of $Delta(G-v)cdot d(v)/2$ by solving the emph{vertex inserting} problem, i.e.inserting a vertex plus incident edges into an optimally chosen planar embedding of a planar graph. Due to a recently developed polynomial algorithm for the latter problem, this establishes the first polynomial fixed-constant approximation algorithm forthe crossing number problem of apex graphs with bounded degree.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph Drawing 2008, Lecture Notes in Computer Science
ISBN
978-3-642-00218-2
ISSN
0302-9743
e-ISSN
—
Number of pages
3
Pages from-to
—
Publisher name
Springer Verlag
Place of publication
Berlin
Event location
Heraklion, Greece
Event date
Oct 21, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000264579700041