All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A tighter insertion-based approximation of the crossing number

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00094634" target="_blank" >RIV/00216224:14330/17:00094634 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10878-016-0030-z" target="_blank" >http://dx.doi.org/10.1007/s10878-016-0030-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10878-016-0030-z" target="_blank" >10.1007/s10878-016-0030-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A tighter insertion-based approximation of the crossing number

  • Original language description

    Let G be a planar graph and F a set of additional edges not yet in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. Finding an exact solution to MEI is NP-hard for general F. We present the first polynomial time algorithm for MEI that achieves an additive approximation guarantee—depending only on the size of F and the maximum degree of G, in the case of connected G. Our algorithm seems to be the first directly implementable one in that realm, too, next to the single edge insertion. It is also known that an (even approximate) solution to the MEI problem would approximate the crossing number of the F-almost-planar graph G+F, while computing the crossing number of G+F exactly is NP-hard already when |F|=1. Hence our algorithm induces new, improved approximation bounds for the crossing number problem of F-almost-planar graphs, achieving constant-factor approximation for the large class of such graphs of bounded degrees and bounded size of F.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA14-03501S" target="_blank" >GA14-03501S: Parameterized algorithms and kernelization in the context of discrete mathematics and logic</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Optimization

  • ISSN

    1382-6905

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    43

  • Pages from-to

    1183-1225

  • UT code for WoS article

    000398945100003

  • EID of the result in the Scopus database

    2-s2.0-85028255701