A tighter insertion-based approximation of the crossing number
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00094634" target="_blank" >RIV/00216224:14330/17:00094634 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10878-016-0030-z" target="_blank" >http://dx.doi.org/10.1007/s10878-016-0030-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10878-016-0030-z" target="_blank" >10.1007/s10878-016-0030-z</a>
Alternative languages
Result language
angličtina
Original language name
A tighter insertion-based approximation of the crossing number
Original language description
Let G be a planar graph and F a set of additional edges not yet in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. Finding an exact solution to MEI is NP-hard for general F. We present the first polynomial time algorithm for MEI that achieves an additive approximation guarantee—depending only on the size of F and the maximum degree of G, in the case of connected G. Our algorithm seems to be the first directly implementable one in that realm, too, next to the single edge insertion. It is also known that an (even approximate) solution to the MEI problem would approximate the crossing number of the F-almost-planar graph G+F, while computing the crossing number of G+F exactly is NP-hard already when |F|=1. Hence our algorithm induces new, improved approximation bounds for the crossing number problem of F-almost-planar graphs, achieving constant-factor approximation for the large class of such graphs of bounded degrees and bounded size of F.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA14-03501S" target="_blank" >GA14-03501S: Parameterized algorithms and kernelization in the context of discrete mathematics and logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Optimization
ISSN
1382-6905
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
43
Pages from-to
1183-1225
UT code for WoS article
000398945100003
EID of the result in the Scopus database
2-s2.0-85028255701