All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Tighter Insertion-based Approximation of the Crossing Number

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F11%3A00049979" target="_blank" >RIV/00216224:14330/11:00049979 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-22006-7_11" target="_blank" >http://dx.doi.org/10.1007/978-3-642-22006-7_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-22006-7_11" target="_blank" >10.1007/978-3-642-22006-7_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Tighter Insertion-based Approximation of the Crossing Number

  • Original language description

    Let $G$ be a planar graph and $F$ a set of additional edges not yet in $G$. The {em multiple edge insertion} problem (MEI) asks for a drawing of $G+F$ with the minimum number of pairwise edge crossings, such that the subdrawing of $G$ is plane. As an exact solution to MEI is NP-hard for general $F$, we present the first approximation algorithm for MEI which achieves an additive approximation factor (depending only on the size of $F$ and the maximum degree of $G$) in the case of connected~$G$. Our algorithm seems to be the first directly implementable one in that realm, too, next to the single edge insertion. It is also known that an (even approximate) solution to the MEI problem would approximate the crossing number of the emph{$F$-almost-planar graph} $G+F$, while computing the crossing number of $G+F$ exactly is NP-hard already when $|F|=1$.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Automata, Languages and Programming 38th International Colloquium, ICALP 2011

  • ISBN

    978-3-642-22005-0

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    122-134

  • Publisher name

    Springer

  • Place of publication

    Gremany

  • Event location

    Zurich, Switzerland

  • Event date

    Jan 1, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article