All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inserting Multiple Edges into a Planar Graph

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00088509" target="_blank" >RIV/00216224:14330/16:00088509 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.30" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.30" target="_blank" >10.4230/LIPIcs.SoCG.2016.30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inserting Multiple Edges into a Planar Graph

  • Original language description

    Let G be a connected planar (but not yet embedded) graph and F a set of additional edges not in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. An optimal solution to this problem is known to approximate the crossing number of the graph G+F. Finding an exact solution to MEI is NP-hard for general F, but linear time solvable for the special case of |F|=1 [Gutwenger et al, SODA 2001/Algorithmica] and polynomial time solvable when all of F are incident to a new vertex [Chimani et al, SODA 2009]. The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented [Chuzhoy et al, SODA 2011], [Chimani-Hlineny, ICALP 2011]. We show that the problem is fixed parameter tractable (FPT) in k for biconnected G, or if the cut vertices of G have bounded degrees.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    32nd International Symposium on Computational Geometry (SoCG 2016)

  • ISBN

    9783959770095

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    "30:1"-"30:15"

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Germany

  • Event location

    Boston, USA

  • Event date

    Jun 14, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article