Vertex insertion approximates the crossing number of apex graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00057323" target="_blank" >RIV/00216224:14330/12:00057323 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2011.09.009" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2011.09.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2011.09.009" target="_blank" >10.1016/j.ejc.2011.09.009</a>
Alternative languages
Result language
angličtina
Original language name
Vertex insertion approximates the crossing number of apex graphs
Original language description
We show that the crossing number of an apex graph, i.e. a graph $G$ from which only one vertex $v$ has to be removed to make it planar, can be approximated up to a factor of $Delta(G-v)cdot d(v)/2$ by solving the emph{vertex inserting} problem, i.e.inserting a vertex plus incident edges into an optimally chosen planar embedding of a planar graph. Due to a recently developed polynomial algorithm for the latter problem, this establishes the first polynomial fixed-constant approximation algorithm forthe crossing number problem of apex graphs with bounded degree.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
326-335
UT code for WoS article
000299858000005
EID of the result in the Scopus database
—