All those EPPA classes (strengthenings of the Herwig-Lascar theorem)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454164" target="_blank" >RIV/00216208:11320/22:10454164 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GTX0QcE~oF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GTX0QcE~oF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/8654" target="_blank" >10.1090/tran/8654</a>
Alternative languages
Result language
angličtina
Original language name
All those EPPA classes (strengthenings of the Herwig-Lascar theorem)
Original language description
Let A be a finite structure. We say that a finite structure B is an extension property for partial automorphisms (EPPA)-witness for A if it contains A as a substructure and every isomorphism of substructures of A extends to an automorphism of B. Class C of finite structures has the EPPA (also called the Hrushovski property) if it contains an EPPA-witness for every structure in C. We develop a systematic framework for combinatorial constructions of EPPA-witnesses satisfying additional local properties and thus for proving EPPA for a given class C. Our constructions are elementary, self-contained and lead to a common strengthening of the Herwig-Lascar theorem on EPPA for relational classes defined by forbidden homomorphisms, the Hodkinson-Otto theorem on EPPA for relational free amalgamation classes, its strengthening for unary functions by Evans, Hubička and Nešetřil and their coherent variants by Siniora and Solecki. We also prove an EPPA analogue of the main results of J. Hubička and J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms), thereby establishing a common framework for proving EPPA and the Ramsey property. There are numerous applications of our results, we include a solution of a problem related to a class constructed by the Hrushovski predimension construction. We also characterize free amalgamation classes of finite Γ_L-structures with relations and unary functions which have EPPA.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
375
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
67
Pages from-to
7601-7667
UT code for WoS article
000830695900001
EID of the result in the Scopus database
2-s2.0-85139565443