All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

EPPA FOR TWO-GRAPHS AND ANTIPODAL METRIC SPACES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414425" target="_blank" >RIV/00216208:11320/20:10414425 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LEw1pquAfS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LEw1pquAfS</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/14872" target="_blank" >10.1090/proc/14872</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    EPPA FOR TWO-GRAPHS AND ANTIPODAL METRIC SPACES

  • Original language description

    We prove that the class of finite two-graphs has the extension property for partial automorphisms (EPPA, or Hrushovski property), thereby answering a question of Macpherson. In other words, we show that the class of graphs has the extension property for switching automorphisms. We present a short, self-contained, purely combinatorial proof which also proves EPPA for the class of integer-valued antipodal metric spaces of diameter 3, answering a question of Aranda et al. The class of two-graphs is an important new example which behaves differently from all the other known classes with EPPA: Two-graphs do not have the amalgamation property with automorphisms (APA), their Ramsey expansion has to add a graph, it is not known if they have coherent EPPA, and even EPPA itself cannot be proved using the Herwig-Lascar theorem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    148

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    1901-1915

  • UT code for WoS article

    000521585500007

  • EID of the result in the Scopus database

    2-s2.0-85083093374