EPPA FOR TWO-GRAPHS AND ANTIPODAL METRIC SPACES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414425" target="_blank" >RIV/00216208:11320/20:10414425 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LEw1pquAfS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LEw1pquAfS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/14872" target="_blank" >10.1090/proc/14872</a>
Alternative languages
Result language
angličtina
Original language name
EPPA FOR TWO-GRAPHS AND ANTIPODAL METRIC SPACES
Original language description
We prove that the class of finite two-graphs has the extension property for partial automorphisms (EPPA, or Hrushovski property), thereby answering a question of Macpherson. In other words, we show that the class of graphs has the extension property for switching automorphisms. We present a short, self-contained, purely combinatorial proof which also proves EPPA for the class of integer-valued antipodal metric spaces of diameter 3, answering a question of Aranda et al. The class of two-graphs is an important new example which behaves differently from all the other known classes with EPPA: Two-graphs do not have the amalgamation property with automorphisms (APA), their Ramsey expansion has to add a graph, it is not known if they have coherent EPPA, and even EPPA itself cannot be proved using the Herwig-Lascar theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Model thoery and extremal combinatorics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
148
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
1901-1915
UT code for WoS article
000521585500007
EID of the result in the Scopus database
2-s2.0-85083093374