All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extending partial isometries of antipodal graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10403900" target="_blank" >RIV/00216208:11320/20:10403900 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E6jdDTXbih" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E6jdDTXbih</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2019.111633" target="_blank" >10.1016/j.disc.2019.111633</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extending partial isometries of antipodal graphs

  • Original language description

    We prove EPPA (extension property for partial automorphisms) for all antipodal classes from Cherlin&apos;s list of metrically homogeneous graphs, thereby answering a question of Aranda et al. This paper should be seen as the first application of a new general method for proving EPPA which can bypass the lack of automorphism-preserving completions. It is done by combining the recent strengthening of the Herwig-Lascar theorem by Hubicka, Nesetril and the author with the ideas of the proof of EPPA for two-graphs by Evans et al. (C) 2019 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

  • Volume of the periodical

    343

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    111633

  • UT code for WoS article

    000504516900001

  • EID of the result in the Scopus database

    2-s2.0-85071402185