Extending partial isometries of antipodal graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10403900" target="_blank" >RIV/00216208:11320/20:10403900 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E6jdDTXbih" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=E6jdDTXbih</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2019.111633" target="_blank" >10.1016/j.disc.2019.111633</a>
Alternative languages
Result language
angličtina
Original language name
Extending partial isometries of antipodal graphs
Original language description
We prove EPPA (extension property for partial automorphisms) for all antipodal classes from Cherlin's list of metrically homogeneous graphs, thereby answering a question of Aranda et al. This paper should be seen as the first application of a new general method for proving EPPA which can bypass the lack of automorphism-preserving completions. It is done by combining the recent strengthening of the Herwig-Lascar theorem by Hubicka, Nesetril and the author with the ideas of the proof of EPPA for two-graphs by Evans et al. (C) 2019 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
343
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
111633
UT code for WoS article
000504516900001
EID of the result in the Scopus database
2-s2.0-85071402185