Torsion models for tensor-triangulated categories: the one-step case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454257" target="_blank" >RIV/00216208:11320/22:10454257 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QLUkaZmDH7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QLUkaZmDH7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2140/agt.2022.22.2805" target="_blank" >10.2140/agt.2022.22.2805</a>
Alternative languages
Result language
angličtina
Original language name
Torsion models for tensor-triangulated categories: the one-step case
Original language description
Given a suitable stable monoidal model category C and a specialization closed subset V of its Balmer spectrum, one can produce a Tate square for decomposing objects into the part supported over V and the part supported over Vc spliced with the Tate object. Using this one can show that C is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra of Greenlees (1999) to a Quillen equivalence. In addition, a close analysis of the one-step case highlights important features needed for general torsion models, which we will return to in future work. (C) 2022, Mathematical Sciences Publishers. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-02760Y" target="_blank" >GJ20-02760Y: Cohen-Macaulay rings and their applications in higher algebra and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebraic and Geometric Topology
ISSN
1472-2747
e-ISSN
1472-2739
Volume of the periodical
2022
Issue of the periodical within the volume
22
Country of publishing house
US - UNITED STATES
Number of pages
52
Pages from-to
2805-2856
UT code for WoS article
000905249300006
EID of the result in the Scopus database
2-s2.0-85144144415