All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Torsion models for tensor-triangulated categories: the one-step case

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454257" target="_blank" >RIV/00216208:11320/22:10454257 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QLUkaZmDH7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QLUkaZmDH7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2140/agt.2022.22.2805" target="_blank" >10.2140/agt.2022.22.2805</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Torsion models for tensor-triangulated categories: the one-step case

  • Original language description

    Given a suitable stable monoidal model category C and a specialization closed subset V of its Balmer spectrum, one can produce a Tate square for decomposing objects into the part supported over V and the part supported over Vc spliced with the Tate object. Using this one can show that C is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra of Greenlees (1999) to a Quillen equivalence. In addition, a close analysis of the one-step case highlights important features needed for general torsion models, which we will return to in future work. (C) 2022, Mathematical Sciences Publishers. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ20-02760Y" target="_blank" >GJ20-02760Y: Cohen-Macaulay rings and their applications in higher algebra and topology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebraic and Geometric Topology

  • ISSN

    1472-2747

  • e-ISSN

    1472-2739

  • Volume of the periodical

    2022

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    52

  • Pages from-to

    2805-2856

  • UT code for WoS article

    000905249300006

  • EID of the result in the Scopus database

    2-s2.0-85144144415