Adjoint maps between implicative semilattices and continuity of localic maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455252" target="_blank" >RIV/00216208:11320/22:10455252 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rvxyB97Sg6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rvxyB97Sg6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-022-00767-4" target="_blank" >10.1007/s00012-022-00767-4</a>
Alternative languages
Result language
angličtina
Original language name
Adjoint maps between implicative semilattices and continuity of localic maps
Original language description
We study residuated homomorphisms (r-morphisms) and their adjoints, the so-called localizations (or l-morphisms), between implicative semilattices, because these objects may be characterized as semilattices whose unary meet operations have adjoints. Since left resp. right adjoint maps are the residuated resp. residual maps (having the property that preimages of principal downsets resp. upsets are again such), one may not only regard the l-morphisms as abstract continuous maps in a pointfree framework (as familiar in the complete case), but also characterize them by concrete closure-theoretical continuity properties. These concepts apply to locales (frames, complete Heyting lattices) and provide generalizations of continuous and open maps between spaces to an algebraic (not necessarily complete) pointfree setting.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
1420-8911
Volume of the periodical
83
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
13
UT code for WoS article
000770767700002
EID of the result in the Scopus database
2-s2.0-85126816202