All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adjoint maps between implicative semilattices and continuity of localic maps

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455252" target="_blank" >RIV/00216208:11320/22:10455252 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rvxyB97Sg6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rvxyB97Sg6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00012-022-00767-4" target="_blank" >10.1007/s00012-022-00767-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adjoint maps between implicative semilattices and continuity of localic maps

  • Original language description

    We study residuated homomorphisms (r-morphisms) and their adjoints, the so-called localizations (or l-morphisms), between implicative semilattices, because these objects may be characterized as semilattices whose unary meet operations have adjoints. Since left resp. right adjoint maps are the residuated resp. residual maps (having the property that preimages of principal downsets resp. upsets are again such), one may not only regard the l-morphisms as abstract continuous maps in a pointfree framework (as familiar in the complete case), but also characterize them by concrete closure-theoretical continuity properties. These concepts apply to locales (frames, complete Heyting lattices) and provide generalizations of continuous and open maps between spaces to an algebraic (not necessarily complete) pointfree setting.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebra Universalis

  • ISSN

    0002-5240

  • e-ISSN

    1420-8911

  • Volume of the periodical

    83

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    23

  • Pages from-to

    13

  • UT code for WoS article

    000770767700002

  • EID of the result in the Scopus database

    2-s2.0-85126816202