All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Complete lattice morphisms compatible with closure operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F10%3APU87088" target="_blank" >RIV/00216305:26210/10:PU87088 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Complete lattice morphisms compatible with closure operators

  • Original language description

    We study closure operators on complete lattices that behave similarly to the usual closure operators on (power) sets. We define and study certain morphisms between complete lattices. These morphisms are discussed with respect to closure operators on complete lattices. We investigate the behavior of the morphisms with respect to regular, continuous and closed maps between complete lattices with a closure operator.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Thai Journal of Mathematics

  • ISSN

    1686-0209

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    TH - THAILAND

  • Number of pages

    8

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database