All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Streaming Algorithms for Geometric Steiner Forest

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455634" target="_blank" >RIV/00216208:11320/22:10455634 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ICALP.2022.47" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2022.47</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2022.47" target="_blank" >10.4230/LIPIcs.ICALP.2022.47</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Streaming Algorithms for Geometric Steiner Forest

  • Original language description

    We consider an important generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset X SUBSET OF OR EQUAL TO   ℝ2, partitioned into k color classes C1, C2,..., Ck SUBSET OF OR EQUAL TO   X. The goal is to find a minimum-cost Euclidean graph G such that every color class Ci is connected in G. We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to X. Each input point x ELEMENT OF X arrives with its color color(x) ELEMENT OF [k], and as usual for dynamic geometric streams, the input is restricted to the discrete grid {0,..., INCREMENT }2. We design a single-pass streaming algorithm that uses poly(k . log INCREMENT ) space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio α2 (currently 1.1547 &lt;= α2 &lt;= 1.214). This approximation guarantee matches the state of the art bound for streaming Steiner tree, i.e., when k = 1. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and has so far not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite approximation requires Ω(k) bits of space. (C) Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý; licensed under Creative Commons License CC-BY 4.0

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-235-8

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    20

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Paříž, Francie

  • Event date

    Jul 4, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article