All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Streaming Algorithms for Geometric Steiner Forest

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493442" target="_blank" >RIV/00216208:11320/24:10493442 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_8m-4DeLtv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_8m-4DeLtv</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3663666" target="_blank" >10.1145/3663666</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Streaming Algorithms for Geometric Steiner Forest

  • Original language description

    We consider a generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset X subset of R2, partitioned into k color classes C1,. .. , C k subset of X . The goal is to find a minimum-cost Euclidean graph G such that every color class C is connected in G . We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to X . Each input point x is an element of X arrives with its color color(x) is an element of [k], and as usual for dynamic geometric streams, the input is restricted to the discrete grid {1, ... , Delta }2. We design a single-pass streaming algorithm that uses poly(k &lt;middle dot&gt; log Delta) space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio a 2 (currently 1.1547 &lt;= a 2 &lt;= 1.214). This approximation guarantee matches the state-of-the-art bound for streaming Steiner tree, i.e., when k = 1, and it is a major open question to improve the ratio to 1 + &amp; even for this special case. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and so far has not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite multiplicative approximation requires Omega (k) bits of space.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACM Transactions on Algorithms

  • ISSN

    1549-6325

  • e-ISSN

    1549-6333

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    38

  • Pages from-to

    28

  • UT code for WoS article

    001356761000007

  • EID of the result in the Scopus database

    2-s2.0-85207020419