A Borel–Weil Theorem for the Irreducible Quantum Flag Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455803" target="_blank" >RIV/00216208:11320/22:10455803 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/23:00574186
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2V2knSCzel" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2V2knSCzel</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnac193" target="_blank" >10.1093/imrn/rnac193</a>
Alternative languages
Result language
angličtina
Original language name
A Borel–Weil Theorem for the Irreducible Quantum Flag Manifolds
Original language description
We establish a noncommutative generalisation of the Borel–Weil theorem for the Heckenberger–Kolb calculi of the irreducible quantum flag manifolds Oq(G/LS), generalising previous work for the quantum Grassmannians Oq(Grn,m). As a direct consequence we get a novel noncommutative differential geometric presentation of the quantum coordinate rings Sq[G/LS] of the irreducible quantum flag manifolds. The proof is formulated in terms of quantum principal bundles, and the recently introduced notion of a principal pair, and uses the Heckenberger and Kolb first-order differential calculus for the quantum Possion homogeneous spaces Oq(G/LsS)
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ20-17488Y" target="_blank" >GJ20-17488Y: Applications of C*-algebra classification: dynamics, geometry, and their quantum analogues</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
1687-0247
Volume of the periodical
1
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
38
Pages from-to
1
UT code for WoS article
000827217200001
EID of the result in the Scopus database
—