All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Borel-Weil theorem for the quantum Grassmannians

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134241" target="_blank" >RIV/00216224:14310/23:00134241 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/23:10475135

  • Result on the web

    <a href="https://doi.org/10.4171/dm/913" target="_blank" >https://doi.org/10.4171/dm/913</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/DM/913" target="_blank" >10.4171/DM/913</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Borel-Weil theorem for the quantum Grassmannians

  • Original language description

    We establish a noncommutative generalisation of the Borel–Weil theorem for the celebrated Heckenberger–Kolb calculi of the quantum Grassmannians. The result is formulated in the framework of quantum principal bundles and noncommutative complex structures, and generalises previous work of a number of authors on quantum projective space. As a direct consequence we get a novel noncommutative differential geometric presentation of the twisted Grassmannian coordinate ring studied in noncommutative projective geometry. A number of applications to the noncommutative Kähler geometry of the quantum Grassmannians are also given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Documenta Mathematica

  • ISSN

    1431-0635

  • e-ISSN

    1431-0643

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    54

  • Pages from-to

    261-314

  • UT code for WoS article

    001052392200001

  • EID of the result in the Scopus database

    2-s2.0-85168288500