A Borel-Weil theorem for the quantum Grassmannians
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134241" target="_blank" >RIV/00216224:14310/23:00134241 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10475135
Result on the web
<a href="https://doi.org/10.4171/dm/913" target="_blank" >https://doi.org/10.4171/dm/913</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/DM/913" target="_blank" >10.4171/DM/913</a>
Alternative languages
Result language
angličtina
Original language name
A Borel-Weil theorem for the quantum Grassmannians
Original language description
We establish a noncommutative generalisation of the Borel–Weil theorem for the celebrated Heckenberger–Kolb calculi of the quantum Grassmannians. The result is formulated in the framework of quantum principal bundles and noncommutative complex structures, and generalises previous work of a number of authors on quantum projective space. As a direct consequence we get a novel noncommutative differential geometric presentation of the twisted Grassmannian coordinate ring studied in noncommutative projective geometry. A number of applications to the noncommutative Kähler geometry of the quantum Grassmannians are also given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Documenta Mathematica
ISSN
1431-0635
e-ISSN
1431-0643
Volume of the periodical
28
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
54
Pages from-to
261-314
UT code for WoS article
001052392200001
EID of the result in the Scopus database
2-s2.0-85168288500