Neural String Edit Distance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457039" target="_blank" >RIV/00216208:11320/22:10457039 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2022.spnlp-1.6" target="_blank" >https://aclanthology.org/2022.spnlp-1.6</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Neural String Edit Distance
Original language description
We propose the neural string edit distance model for string-pair matching and string transduction based on learnable string edit distance. We modify the original expectation-maximization learned edit distance algorithm into a differentiable loss function, allowing us to integrate it into a neural network providing a contextual representation of the input. We evaluate on cognate detection, transliteration, and grapheme-to-phoneme conversion, and show that we can trade off between performance and interpretability in a single framework. Using contextual representations, which are difficult to interpret, we match the performance of state-of-the-art string-pair matching models. Using static embeddings and a slightly different loss function, we force interpretability, at the expense of an accuracy drop.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Sixth Workshop on Structured Prediction for NLP
ISBN
978-1-955917-51-3
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
52-66
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, USA
Event location
Dublin, Ireland
Event date
May 27, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000847352600006