All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Probing the Role of Positional Information in Vision-Language Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457088" target="_blank" >RIV/00216208:11320/22:10457088 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2022.findings-naacl.77" target="_blank" >https://aclanthology.org/2022.findings-naacl.77</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2022.findings-naacl.77" target="_blank" >10.18653/v1/2022.findings-naacl.77</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Probing the Role of Positional Information in Vision-Language Models

  • Original language description

    In most Vision-Language models (VL), the understanding of the image structure is enabled by injecting the position information (PI) about objects in the image. In our case study of LXMERT, a state-of-the-art VL model, we probe the use of the PI in the representation and study its effect on Visual Question Answering. We show that the model is not capable of leveraging the PI for the image-text matching task on a challenge set where only position differs. Yet, our experiments with probing confirm that the PI is indeed present in the representation. We introduce two strategies to tackle this: (i) Positional Information Pre-training and (ii) Contrastive Learning on PI using Cross-Modality Matching. Doing so, the model can correctly classify if images with detailed PI statements match. Additionally to the 2D information from bounding boxes, we introduce the object&apos;s depth as new feature for a better object localization in the space. Even though we were able to improve the model properties as defined by our

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-26934X" target="_blank" >GX19-26934X: Neural Representations in Multi-modal and Multi-lingual Modeling</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Findings of the Association for Computational Linguistics: NAACL 2022

  • ISBN

    978-1-955917-76-6

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    1031-1041

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Stroudsburg, PA, USA

  • Event location

    Seattle, WA, USA

  • Event date

    Jul 10, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article