ÚFAL CorPipe at CRAC 2022: Effectivity of Multilingual Models for Coreference Resolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457091" target="_blank" >RIV/00216208:11320/22:10457091 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2022.crac-mcr.4/" target="_blank" >https://aclanthology.org/2022.crac-mcr.4/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ÚFAL CorPipe at CRAC 2022: Effectivity of Multilingual Models for Coreference Resolution
Original language description
We describe the winning submission to the CRAC 2022 Shared Task on Multilingual Coreference Resolution. Our system first solves mention detection and then coreference linking on the retrieved spans with an antecedent-maximization approach, and both tasks are fine-tuned jointly with shared Transformer weights. We report results of fine-tuning a wide range of pretrained models. The center of this contribution are fine-tuned multilingual models. We found one large multilingual model with sufficiently large encoder to increase performance on all datasets across the board, with the benefit not limited only to the underrepresented languages or groups of typologically relative languages. The source code is available at https://github.com/ufal/crac2022-corpipe.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX20-16819X" target="_blank" >GX20-16819X: Language Understanding: from Syntax to Discourse</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů