A BERT's Eye View: Identification of Irish Multiword Expressions Using Pre-trained Language Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AQCXFI9DD" target="_blank" >RIV/00216208:11320/22:QCXFI9DD - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2022.mwe-1.13" target="_blank" >https://aclanthology.org/2022.mwe-1.13</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A BERT's Eye View: Identification of Irish Multiword Expressions Using Pre-trained Language Models
Original language description
This paper reports on the investigation of using pre-trained language models for the identification of Irish verbal multiword expressions (vMWEs), comparing the results with the systems submitted for the PARSEME shared task edition 1.2. We compare the use of a monolingual BERT model for Irish (gaBERT) with multilingual BERT (mBERT), fine-tuned to perform MWE identification, presenting a series of experiments to explore the impact of hyperparameter tuning and dataset optimisation steps on these models. We compare the results of our optimised systems to those achieved by other systems submitted to the shared task, and present some best practices for minority languages addressing this task.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 18th Workshop on Multiword Expressions (MWE 2022) n@LREC2022
ISBN
979-10-95546-90-0
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
89-99
Publisher name
European Language Resources Association
Place of publication
—
Event location
Marseille, France
Event date
Jan 1, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—