Exploring the Antitumor Potential of Copper Complexes Based on Ester Derivatives of Bis(pyrazol-1-yl)acetate Ligands
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457096" target="_blank" >RIV/00216208:11320/22:10457096 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OsQUvXiHgO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OsQUvXiHgO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijms23169397" target="_blank" >10.3390/ijms23169397</a>
Alternative languages
Result language
angličtina
Original language name
Exploring the Antitumor Potential of Copper Complexes Based on Ester Derivatives of Bis(pyrazol-1-yl)acetate Ligands
Original language description
Bis(pyrazol-1-yl)acetic acid (HC(pz)(2)COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pz(Me2))(2)COOH) were converted into the methyl ester derivatives 1 (L-OMe) and 2 (L-2OMe), respectively, and were used for the preparation of Cu(I) and Cu(II) complexes 3-10. The copper(II) complexes were prepared by the reaction of CuCl2 center dot 2H(2)O or CuBr2 with ligands 1 and 2 in methanol solution. The copper(I) complexes were prepared by the reaction of Cu[(CH3CN)(4)]PF6 and 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine with L-OMe and L-2OMe in acetonitrile solution. Synchrotron radiation-based complementary techniques (XPS, NEXAFS, and XAS) were used to investigate the electronic and molecular structures of the complexes and the local structure around copper ions in selected Cu(I) and Cu(II) coordination compounds. All Cu(I) and Cu(II) complexes showed a significant in vitro antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human cancer cell lines, and were able to overcome cisplatin resistance. Noticeably, Cu complexes appeared much more effective than cisplatin in 3D spheroid cultures. Mechanistic studies revealed that the antitumor potential did not correlate with cellular accumulation but was consistent with intracellular targeting of PDI, ER stress, and paraptotic cell death induction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
—
Continuities
—
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Molecular Sciences
ISSN
1661-6596
e-ISSN
1422-0067
Volume of the periodical
23
Issue of the periodical within the volume
16
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
9397
UT code for WoS article
000845778800001
EID of the result in the Scopus database
—