All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On sets of discontinuities of functions continuous on all lines

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10475582" target="_blank" >RIV/00216208:11320/22:10475582 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.PFYnuFtQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.PFYnuFtQ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.2023.007" target="_blank" >10.14712/1213-7243.2023.007</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On sets of discontinuities of functions continuous on all lines

  • Original language description

    Answering a question asked by K. C. Ciesielski and T. Glatzer in 2013, we construct a C1-smooth function f on [0,1] and a closed set M subset of graphf nowhere dense in graphf such that there does not exist any linearly continuous function on R2 (i.e., function continuous on all lines) which is discontinuous at each point of M. We substantially use a recent full characterization of sets of discontinuity points of linearly continuous functions on Rn proved by T. Banakh and O. Maslyuchenko in 2020. As an easy consequence of our result, we prove that the necessary condition for such sets of discontinuities proved by S. G. Slo-bodnik in 1976 is not sufficient. We also prove an analogue of this Slobodnik&apos;s result in separable Banach spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

    1213-7243

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    19

  • Pages from-to

    487-505

  • UT code for WoS article

    000974293600007

  • EID of the result in the Scopus database

    2-s2.0-85153307928