On sets of discontinuities of functions continuous on all lines
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10475582" target="_blank" >RIV/00216208:11320/22:10475582 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.PFYnuFtQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.PFYnuFtQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/1213-7243.2023.007" target="_blank" >10.14712/1213-7243.2023.007</a>
Alternative languages
Result language
angličtina
Original language name
On sets of discontinuities of functions continuous on all lines
Original language description
Answering a question asked by K. C. Ciesielski and T. Glatzer in 2013, we construct a C1-smooth function f on [0,1] and a closed set M subset of graphf nowhere dense in graphf such that there does not exist any linearly continuous function on R2 (i.e., function continuous on all lines) which is discontinuous at each point of M. We substantially use a recent full characterization of sets of discontinuity points of linearly continuous functions on Rn proved by T. Banakh and O. Maslyuchenko in 2020. As an easy consequence of our result, we prove that the necessary condition for such sets of discontinuities proved by S. G. Slo-bodnik in 1976 is not sufficient. We also prove an analogue of this Slobodnik's result in separable Banach spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
1213-7243
Volume of the periodical
63
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
19
Pages from-to
487-505
UT code for WoS article
000974293600007
EID of the result in the Scopus database
2-s2.0-85153307928