Morphological Processing of Low-Resource Languages: Where We Are and What's Next
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A2SBUITQ6" target="_blank" >RIV/00216208:11320/22:2SBUITQ6 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2022.findings-acl.80" target="_blank" >https://aclanthology.org/2022.findings-acl.80</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.findings-acl.80" target="_blank" >10.18653/v1/2022.findings-acl.80</a>
Alternative languages
Result language
angličtina
Original language name
Morphological Processing of Low-Resource Languages: Where We Are and What's Next
Original language description
Automatic morphological processing can aid downstream natural language processing applications, especially for low-resource languages, and assist language documentation efforts for endangered languages. Having long been multilingual, the field of computational morphology is increasingly moving towards approaches suitable for languages with minimal or no annotated resources. First, we survey recent developments in computational morphology with a focus on low-resource languages. Second, we argue that the field is ready to tackle the logical next challenge: understanding a language's morphology from raw text alone. We perform an empirical study on a truly unsupervised version of the paradigm completion task and show that, while existing state-of-the-art models bridged by two newly proposed models we devise perform reasonably, there is still much room for improvement. The stakes are high: solving this task will increase the language coverage of morphological resources by a number of magnitudes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Findings of the Association for Computational Linguistics: ACL 2022
ISBN
978-1-955917-25-4
ISSN
—
e-ISSN
—
Number of pages
20
Pages from-to
988-1007
Publisher name
Association for Computational Linguistics
Place of publication
—
Event location
Dublin, Ireland
Event date
Jan 1, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—