All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of the laser fluence on the microstructure and the relating magnetic properties of BaFe12O19 films grown on YSZ(111) by PLD for optimized perpendicular recording

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10458348" target="_blank" >RIV/00216208:11320/23:10458348 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8ZTqPmQycC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8ZTqPmQycC</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10853-022-08104-9" target="_blank" >10.1007/s10853-022-08104-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of the laser fluence on the microstructure and the relating magnetic properties of BaFe12O19 films grown on YSZ(111) by PLD for optimized perpendicular recording

  • Original language description

    High-quality BaFe12O19 (BaM) films with high uniaxial anisotropy fields of H-A = 17.5 and 18.5 kOe were obtained by pulsed laser deposition (PLD) at two fluences of 1.5 and 5.1 J/cm(2) on YSZ(111) substrate, using a platinum interlayer for reducing lattice mismatch. We demonstrated that the microstructure, morphology, and stoichiometry of the hexaferrite BaFe12O19 films can be affected by raising the corresponding energy per pulse from 25 to 75 mJ. However, we also concluded that the increase of fluence leads to the formation of a non-stoichiometric BaM film through two nucleation steps and an output growth of small grains in addition to the increase of the defect density. In turn, this has contributed to the enhancement of the coercive field from H-c = 1769 Oe to H-c = 2166 Oe as it is required for the improvement of perpendicular recording resolution. We found that both the lateral coherent block size and misorientation of mosaic blocks are remarkably affected by the growth kinetics, which itself depends on the energy per pulse. For a deep understanding of the effect of laser fluence on the microstructure, chemical composition, and on the magnetic properties of thin BaM films, the results of complementary methods are combined. These methods comprise high-resolution X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy (TEM), scanning TEM combined with energy-dispersive X-ray spectroscopy, and vibrating sample magnetometer. [GRAPHICS]

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Materials Science

  • ISSN

    0022-2461

  • e-ISSN

    1573-4803

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    718-739

  • UT code for WoS article

    000906400600050

  • EID of the result in the Scopus database

    2-s2.0-85145308997