Effect of Underlayer Quality on Microstructure, Stoichiometry, and Magnetic Properties of Hexaferrite BaFe12O19 Grown on YSZ(111) by Pulsed Laser Deposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10469801" target="_blank" >RIV/00216208:11320/23:10469801 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eyk3K~Kzb6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eyk3K~Kzb6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.langmuir.3c01618" target="_blank" >10.1021/acs.langmuir.3c01618</a>
Alternative languages
Result language
angličtina
Original language name
Effect of Underlayer Quality on Microstructure, Stoichiometry, and Magnetic Properties of Hexaferrite BaFe12O19 Grown on YSZ(111) by Pulsed Laser Deposition
Original language description
We have studied the effect of platinum underlayer for two deposited thicknesses on the microstructure, crystalline quality, morphology, chemical composition, and magnetic properties as well as magnetic domain formation of BaFe12O19 (BaM) grown on YSZ(111) by pulsed laser deposition (PLD). We found that PLD platinum deposited with a thickness of 25 nm cannot withstand the dewetting phenomenon occurring during the subsequent BaM layer growth. A smooth and continuous Pt underlayer that possesses a sharp interface and omits the intermixing between the BaM and substrate was successfully achieved for a deposited Pt film thickness of 75 nm. Independent of the thickness of the deposited Pt layer, the c-axis orientation as well as coercivity Hc and the anisotropy H A fields were significantly improved due to a remarkable improvement of lattice mismatch in comparison with the BaM layer grown without a Pt underlayer on YSZ(111). By applying high-resolution X-ray diffraction, scanning and transmission electron microscopy (SEM/TEM), and atomically resolved scanning TEM imaging combined with energy-dispersive X-ray spectroscopy, as well as atomic and magnetic force microscopy, a comprehensive investigation of both structure and chemical composition of the deposited BaM films and their interfacial regions was performed. This study aimed to correlate the enhancement of the overall magnetic properties and of the local spin magnetic domain orientation with the modification of BaM microstructure and chemical composition at the nanometer scale due to the Pt underlayer. Finally, we attempted to understand the mechanisms that control the magnetic properties of these BaM films in order to be able to tailor them.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Langmuir : the ACS journal of surfaces and colloids
ISSN
0743-7463
e-ISSN
1520-5827
Volume of the periodical
39
Issue of the periodical within the volume
40
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
14308-14327
UT code for WoS article
001072727200001
EID of the result in the Scopus database
2-s2.0-85174936933