Mean Lipschitz-Killing curvatures for homogeneous random fractals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468044" target="_blank" >RIV/00216208:11320/23:10468044 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_.Mx0vu7of" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_.Mx0vu7of</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JFG/124" target="_blank" >10.4171/JFG/124</a>
Alternative languages
Result language
angličtina
Original language name
Mean Lipschitz-Killing curvatures for homogeneous random fractals
Original language description
Homogeneous random fractals form a probabilistic extension of self-similar sets with more dependencies than in random recursive constructions. For such random fractals we consider mean values of the Lipschitz-Killing curvatures of their parallel sets for small parallel radii. Under the uniform strong open set condition and some further geometric assumptions, we show that rescaled limits of these mean values exist as the parallel radius tends to 0. Moreover, integral representations are derived for these limits which extend those known in the deterministic case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Fractal Geometry
ISSN
2308-1309
e-ISSN
2308-1317
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
42
Pages from-to
1-42
UT code for WoS article
001050148400001
EID of the result in the Scopus database
2-s2.0-85169583237