All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mean Lipschitz-Killing curvatures for homogeneous random fractals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468044" target="_blank" >RIV/00216208:11320/23:10468044 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_.Mx0vu7of" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_.Mx0vu7of</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4171/JFG/124" target="_blank" >10.4171/JFG/124</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mean Lipschitz-Killing curvatures for homogeneous random fractals

  • Original language description

    Homogeneous random fractals form a probabilistic extension of self-similar sets with more dependencies than in random recursive constructions. For such random fractals we consider mean values of the Lipschitz-Killing curvatures of their parallel sets for small parallel radii. Under the uniform strong open set condition and some further geometric assumptions, we show that rescaled limits of these mean values exist as the parallel radius tends to 0. Moreover, integral representations are derived for these limits which extend those known in the deterministic case.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Fractal Geometry

  • ISSN

    2308-1309

  • e-ISSN

    2308-1317

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    42

  • Pages from-to

    1-42

  • UT code for WoS article

    001050148400001

  • EID of the result in the Scopus database

    2-s2.0-85169583237